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Abstract
Recently published research indicates that a vertex-labeling algorithm based on

dynamic-programming concepts is the most efficient procedure available for solving
constrained shortest-path problems (CSPPs), i.e., shortest-path problems with one
or more side constraints on the total “weight” of the optimal path. However,
we investigate an alternative procedure that Lagrangianises the side constraints,
optimises the resulting Lagrangian function and then closes any duality gap through
enumeration of near-shortest paths. These paths are measured with respect to
Lagrangian-modified edge lengths, and “near-shortest” implies ε-optimal, with ε
equal to the duality gap. Our recently developed procedure for enumerating near-
shortest-paths leads to an algorithm for CSPP that, empirically, proves to be an
order of magnitude faster than the most recent vertex-labeling algorithm.

1 Introduction

Shortest-path problems in networks with non-negative edge lengths (or with some
negative-length edges, but no negative-length cycles) can be solved easily, in poly-
nomial time. However, if each edge possesses a weight in addition to its length, and
if a single side constraint is placed on the optimal path’s total weight, the problem
becomes NP-complete (Garey and Johnson [13], p. 214). Multiple edge weights
and weight limits may be defined, and we call the general problem the constrained
shortest-path problem (CSPP). This paper describes and demonstrates an improved
method for solving this problem.

CSPP is only NP-complete in the weak sense and admits a dynamic-program-
ming solution procedure (Joksch [16]). However, dynamic programming (DP) can
be unacceptably slow in practice, and vertex-labeling algorithms based on DP con-
cepts have supplanted straightforward DP implementations (e.g., Aneja et al. [2],
Dumitrescu and Boland [10]). Other potentially useful techniques include branch



and bound using a Lagrangian-based bound (Beasley and Christofides [4]), and La-
grangian relaxation coupled with K-shortest path enumeration (Handler and Zang
[15]).

Dumitrescu and Boland [10] indicate that a vertex-labeling (label-setting) al-
gorithm combined with several preprocessing techniques may be the most efficient
technique currently available for CSPP. However, we have developed a new algo-
rithm (Carlyle and Wood [7]) for enumerating near-shortest paths (NSPs), i.e., all
paths that are within ε units of being shortest for a prespecified ε ≥ 0. This NSP
algorithm can be used as a subroutine to solve the K-shortest-paths problem orders
of magnitude faster than previous methods. Consequently, Lagrangian relaxation
plus enumeration (LRE), similar to Handler and Zang [15], requires reevaluations
as an alternative procedure for solving CSPP. That is the precise purpose of this
paper.

We note that the paradigm of “near-shortest paths” is, in fact, more appropriate
in the context of LRE for CSPP than is “K-shortest paths” as used in [15]. This
issue is discussed in more detail later.

CSPP arises in a number of real-world contexts. The most well-known appli-
cation may be column-generation for generalized set-partitioning models of crew-
scheduling and crew-rostering problems, especially in the airline industry (e.g.,
Gamache et al. [12], Vance et al. [23]). Another important application is the
minimum-risk routing of military aircraft and other military “vehicles” (e.g., Boer-
man [6], Latourell, et al. [19], Lee [20], Zabarankin et al. [25]). Additional applica-
tions include signal routing in communications networks having quality-of-service
guarantees (see Korkmaz and Krunz [18] and the references therein), signal com-
pression (Nygaard et al. [22]) and numerous transportation problems (e.g., Nachti-
gall [21], Kaufman and Smith [17]).

In the remainder of the paper, we first define CSPP precisely, and then describe
the basic LRE solution approach. Next, we provide an overview of the NSP algo-
rithm that makes our LRE approach viable, followed by a detailed, pseudo-code
description of the enumeration portion of the LRE algorithm. Optimisation of the
Lagrangian function is not discussed in detail because the relevant techniques are
well known; a number of references are provided, however. Preliminary computa-
tional results are then presented for singly constrained shortest-path problems on
large grid networks. These problems mimic the structure of some difficult problems
solved by Dumitrescu and Boland [10], and therefore allow for useful comparisons
of techniques. The paper concludes with a summary and directions for further
research.

2 Basic Problem and Approach

We are given a directed network G = (V, E), where V represents a set of vertices,
and E represents a set of directed edges (u, v) connecting distinct vertices u, v ∈ V .
Each edge (u, v) ∈ E has a length cuv ≥ 0 and one or more weights, fiuv ≥ 0, for
i ∈ I. (Non-negativity of lengths and weights is not an absolute requirement, but
this assumption simplifies the following discussion.) Two distinct vertices s, t ∈ V
are defined, as well as a limit gi ≥ 0 on path weight for each i ∈ I. The constrained



shortest-path problem (CSPP) is to find a loopless, directed, s-t path p, which we
denote here through its edge set Ep ⊂ E, such that

∑
(u,v)∈Ep

fiuv ≤ gi for all i ∈ I
and such that

∑
(u,v)∈Ep

cuv is minimised.
Let A denote the standard vertex-edge incidence matrix for G, and let bs = 1,

bt = −1 and bv = 0 for all v ∈ V \{s, t}. Then, CSPP may be written as an integer
program (Ahuja et al. [1], p. 599),

CSPIP z∗ = min
x

cx (1)

s.t. Ax = b (2)

Fx ≤ g (3)

x ≥ 0 and integer, (4)

where equations (3) are the side constraints, and where x∗
uv = 1 if edge (u, v) is in

the optimal path, and x∗
uv = 0, otherwise, (The problem’s structure leads to binary

solutions without explicit constraints x ≤ 1.)
CSPIP would be easy to solve—it would just be a shortest-path problem—if

not for the side constraints Fx ≤ g. We expect to have only a few such constraints,
say one to ten, and it therefore seems reasonable to base a solution procedure on
relaxing them. Using the standard theory of Lagrangian relaxation, we know that
for any row vector λ ≥ 0, appropriately dimensioned,

z∗ ≥ z(λ) = min
x

cx + λ(Fx− g) (5)

s.t. Ax = b (6)

x ≥ 0 and integer. (7)

We can then rewrite the objective function, and optimise the Lagrangian lower
bound z∗ through

CSPLR z∗ = max
λ≥0

z(λ) (8)

= max
λ≥0

min
x

(c + λF )x− λg (9)

s.t. Ax = b (10)

x ≥ 0 and integer. (11)

For any fixed λ ≥ 0, computing z(λ) simply requires the solution of a shortest-path
problem with Lagrangian-modified edge lengths.

The outer maximisation over λ can be solved via bisection search for one
side constraint (Fox and Landi [11]), coordinate search for a few side constraints
(e.g., DeWolfe, Stevens and Wood [9]), subgradient optimisation (Beasley and
Christofides [4] describe this for CSPP), or even through a linear-programming
master problem as in Benders decomposition (Benders [5]). In this preliminary
research, we only study singly constrained problems, so bisection search suffices to
maximise z(λ) nearly exactly.

Often, in the process of optimising z(λ), one finds a solution x̂ that is feasible
with respect to the relaxed constraints (3) as well as to constraints (2) and (4).
Specifically, if F is a non-negative matrix, by making the vector λ sufficiently
large, violation of the constraints Fx ≤ g is discouraged, and a feasible solution



typically results. We will assume we have found a feasible solution x̂, and can
therefore compute the upper bound z̄ ≡ cx̂ ≥ z∗.

Now, given z̄, and an apparently “good” vector λ, the problem of identifying
x∗ maybe be viewed as one of simple enumeration:

Theorem 1 Let X̂(λ, z̄) denote the set of feasible solutions to CSPLR such that
cx̂ + λ(F x̂ − g) ≤ z̄. Then, x∗ ∈ X̂(λ, z̄). That is, an optimal solution x∗ to
CSPIP can be identified by enumerating X̂(λ, z̄) and selecting

x∗ ∈ argmin
x ∈ X̂(λ, z̄)|Fx ≤ g

cx (12)

Proof: Since Fx∗ ≤ g and λ ≥ 0, this follows from the facts that (i) cx∗+λ(Fx∗−
g) ≤ z∗, and (ii) z∗ ≤ z̄.

This theorem is valid for any λ ≥ 0, but it is easy to devise examples that show
how an optimal or near-optimal λ for CSPLR can exponentially reduce the size
of X̂(λ, z̄) and thereby exponentially reduce computational workload.

Note that Theorem 1 implies that we may need to enumerate each path, repre-
sented here by x̂, such that (c+λF )x̂−λg ≤ z̄. That is, if x∗

λ solves the shortest-
path problem given the edge-length vector c+λF , and z(λ) ≡ (c+λF )x̂∗

λ−λg then
CSPP is solved by enumerating all paths x̂ such that z(λ) ≤ (c + λF )x̂−λg ≤ z̄.
In turn, this means that, given edge-length vector c + λF , we wish to find all
ε-optimal (near-shortest) paths for ε ≡ z̄ − z(λ). Thus, an NSP algorithm that
identifies all ε-optimal paths seems more natural for purposes of enumeration than
a K-shortest-paths (KSP) algorithm, which is designed to enumerate the K shortest
paths for a prespecified integer K. Typical KSP algorithms (e.g., Hadjiconstantinou
and Christofides [14]) can and have been used, however, because they enumerate
paths in order of increasing length, and can be halted when path length exceeds
(c + λF )x∗

λ + ε. But, enumerating paths in order of length requires unnecessary
computational work and algorithmic complexity; the NSP algorithm of [7] is much
simpler.

3 A New LRE Algorithm for CSPP

We can now describe our basic LRE approach for solving CSPP:

LRE Algorithm for CSPP, Outline

1. Optimise the Lagrangian lower bound to find a “good” vector λ.

2. In the optimisation process, identify a feasible path x̂, and hence an upper
bound on z∗, i.e., z̄ ≡ cx̂ ≥ z∗.

3. Using a standard path-enumeration algorithm, begin enumerating all paths
x̂ such that (c + λF )x̂− λg ≤ z̄, with the following modifications:



(a) Use the side constraints to limit the enumeration when it can be pro-
jected that any one of them cannot be satisfied; that is, do not extend
the current s-u subpath along an edge (u, v) if that must lead to the
violation of one or more side constraints. Similarly, do not extend the
subpath along (u, v) if the length of that path, with respect to true edge
lengths c, cannot be shorter than z̄. (This is handled by creating an
extra side constraint cx ≤ z̄.)

(b) Update the incumbent solution x̂ and the upper bound z̄ = cx̂ whenever
a shorter, feasible path is found.

4. The best solution, x̂, identified in this way, is optimal.

As with many optimization procedures, we can easily modify this LRE algorithm
to identify a near-optimal solution, i.e., a solution within δ > 0 units of optimal-
ity rather than an exact solution; and this may reduce the computational burden
substantially. The pseudo-code for the algorithm listed below does include such a
parameter δ, but we do not explore its usefulness in this paper.

The NSP algorithm upon which we base this procedure first computes the min-
imum distance d′(v) from each v ∈ V back to t by solving a single, backwards,
shortest-path problem starting from t (with respect to unmodified edge lengths cuv

in this description). Then, a standard path-enumeration algorithm is begun from
s, but the current s-u subpath is extended along an edge (u, v) if and only if (i) the
length of the current subpath, denoted L(u), plus cuv, plus d′(v), does not exceed
the definition of “near-shortest”, and (ii) the path does not loop back on itself.
This particular implementation may require exponential work per path enumer-
ated because, after adding an edge to the current subpath, it does not recompute
distances d′(w), for w ∈ V . A theoretically efficient implementation must recom-
pute these values which are defined through paths that do not intersect the current
subpath and thus can change as the algorithm proceeds. (However, the values d′(w)
used in the implemented algorithm represent lower bounds on the “true values”,
and lower bounds are sufficient to ensure correctness.) This theoretically inefficient
implementation turns out to be the most efficient in practice, however [7].

We now provide a detailed description of our LRE algorithm assuming that z(λ)
has already been optimised and an incumbent solution x̂ identified.

Path-Enumeration Subroutine for LRE Algorithm to Solve CSPP
DESCRIPTION: Finds a path, identified by its edge-incidence vector x∗,

that satisfies Fx∗ ≤ g and is within δ units of being shortest.
INPUT: A directed graph G = (V, E) in adjacency-list format, s, t, edge length

vector c ≥ 0, side-constraint data for Fx ≤ g with F non-negative,
optimal or near-optimal Lagrangian vector λ for CSPLR, incumbent
solution x̂, lower bound z(λ) and parameter δ ≥ 0.

OUTPUT: A δ-optimal shortest path x∗ satisfying Fx∗ ≤ g.
NOTE: “firstEdge(v)” points to the first edge in a linked list of edges directed

out of v.
{

x∗ ← x̂; z̄ ← cx∗; /* x∗ stores the incumbent solution rather than x̂ */



c′ ← c + λF ;
/* Add a “0-th side constraint” to limit enumeration based on c */
I+ ← I ∪ {0}; f0 ← c; g0 ← z̄;
/* The following requires just one backwards shortest-path calculation */
for ( all v ∈ V ) { d′(v)← minimum distance, in terms of c′, from v to t; }
for ( each side constraint i ∈ I+ ){

/* Solve a backwards shortest-path problem using edge “lengths” fi */
for ( all v ∈ V ) { d′

i(v)← minimum weight, in terms of fi, from v to t; }
}
for( all v ∈ V ) { nextEdge(v) ← firstEdge(v); }
L(s)← −λg; /* Initialize path length with the Lagrangian constant term */
for( all i ∈ I+ ) { Li(s)← 0; } /* Initial path weight with respect fi is 0 */
theStack ← s; onStack(s) ← true; onStack(v) ← false ∀ v ∈ V \{s};
while ( theStack is not empty ){

u ← vertex at the top of theStack;
if ( nextEdge(u) 	= ∅ ) {

(u, v) ← the edge pointed to by nextEdge(u);
increment nextEdge(u);
if ( (onStack(v) = false)

and (L(u) + c′uv + d′(v) < z̄ − δ)
and (Li(u) + fiuv + d′

i(v) ≤ gi ∀ i ∈ I+) ) {
if ( v = t ) { /* An improved solution has been found */

Represent the feasible path encoded as theStack ∪ {t} through
its edge-incidence vector x̂;
z̄ ← cx̂; g0 ← z̄; x∗ ← x̂;
/* Preemptive termination is possible in the following step */
if ( z̄ − z(λ) ≤ δ ) goto Finish;

} else {
push v on theStack; onStack(v) ← true;
L(v)← L(u) + cuv;
for ( all side constraints i ∈ I+ ) { Li(v)← Li(u) + fiuv; }

}
}

} else {
Pop u from theStack; onStack(u) ← false;
nextEdge(u) ← firstEdge(u);

}
}
Finish: Print ( x∗ );

}

4 Computational Results

All computational tests are carried out on a laptop computer with an Intel 1 GHz
Pentium III processor, 512 megabytes of RAM, the Microsoft Windows 2000 oper-
ating system, and with programs written and compiled with the Microsoft Visual



C++ Version 6.0. We compare our results using some of the grid networks studied
by Dumitrescu and Boland [10] whose computer has 512 megabytes of RAM and a
Pentium III processor running at 930 MHz. Thus, direct comparisons of run times
are reasonably fair (or the reader may multiply the times from [10] by roughly 0.9).

The test networks, denoted “Grid(a, b)”, are formed on a rectangular grid, a
vertices tall and b vertices wide, with a separate source vertex s and sink vertex
t external to the grid. The source s is connected to each vertex in the leftmost
column of the grid, and each vertex in the rightmost column is connected to t.
Each vertex u within the grid has (up to) three edges (u, v) directed out of it,
up, down, and from left to right, as long as the vertex v exists in the grid. Edge
lengths and weights are uniform, randomly generated integers in the range [1,10]
for vertical edges, and in the range [80,100] for horizontal edges. The weight limit
is �0.5(gmax + gmin)� where gmin is the weight of the minimum-weight path, and
gmax is the weight of the shortest s-t path. This problem structure represents that
of “problem class 4-M, Type 2”, which is the most computationally difficult class
of grid networks generated and studied by Dumitrescu and Boland [10]. (These
authors do analyze digital elevation models, which are grid networks taken from
other sources, i.e., not generated by the authors.) Table 1 displays computational
results for five instances of this problem class of the sizes reported in [10], and one
larger one.

Problem |V | |E| Run Time D&B Run Time
(sec) (sec)

Grid(30, 100) 3,002 8,830 0.04 0.04
Grid(100, 100) 10,002 29,990 0.19 0.09
Grid(200, 200) 40,002 119,800 0.42 1.53
Grid(350, 200) 70,002 209,950 0.70 5.67
Grid(450, 300) 135,002 404,850 1.43 20.93
Grid(1000, 1350) 1,350,002 4,049,350 14.89 –

Table 1: Computational results for difficult grid networks. Graph structure and
numerical data correspond to problem class 4-M, Type 2, in [10]. Solutions are
guaranteed to be within 0.1% of optimal, i.e., the “relative optimality tolerance”
is 0.1%. Computations are performed on a 1 GHz Pentium III computer. “D&B
Run Time”, shown for comparison, is the best run time listed in Dumitrescu and
Boland [10]. Their computations are performed on a 930 MHz Pentium III computer
using a modified label-setting algorithm combined with preprocessing; their relative
optimality tolerance is 5%. Those authors do not test a problem of size comparable
to Grid(1000, 1350).

It appears from Table 1 that the LRE approach can deliver an order of mag-
nitude speedup over the vertex-labeling algorithm developed in [10], at least for
larger problems. This computational testing is preliminary, of course, and a wider
variety of problems must be investigated.



5 Conclusions

We have described an improved algorithm for solving the constrained shortest-
path problem (CSPP). Our “LRE algorithm” Lagrangianises all side constraints,
optimises the resulting Lagrangian function, defines new edge lengths through the
Lagrangian function, and enumerates all near-shortest paths in order to close any
remaining duality gap. Testing on singly constrained problems indicates that the
LRE methodology can be an order of magnitude faster than the most recently
published vertex-labeling algorithm.

The LRE algorithm certainly warrants further testing and refinement. Although
the problems tested here represent computationally difficult grid networks from [10],
these problems do not have large duality gaps (less than 1%), and are therefore not
very difficult for our algorithm. A subsequent paper will investigate problems with
larger duality gaps. We will also perform testing on the digital elevation models
investigated by Dumitrescu and Boland [10], which form the only other class of
problems those authors find computationally challenging. Problems with multiple
side constraints will also be investigated.

Future refinements of our LRE algorithm will incorporate preprocessing to elim-
inate parts of the network that cannot appear in any optimal solution. For instance,
by solving a shortest-path problem from s with respect to edge weights, and by
solving another one backward from t, one may eliminate vertices and edges whose
traversal would ensure the violation of at least one side constraint. Our algorithm
will not gain as much from such preprocessing as does a vertex-labeling algorithm
because the enumeration subroutine automatically avoids searching parts of the
network that lead to constraint violations (or whose traversal ensures that any re-
sulting solution must be worse than the incumbent solution). Nonetheless, useful
improvements may be gained for some problems.

We are also pursuing applications of the LRE algorithm to column-generation
problems that arise in set-partitioning models for airline crew scheduling. Further-
more, we believe that the algorithm holds promise for automated, minimum-risk
routing of military aircraft and will be pursuing that application.

The paradigm of Lagrangian relaxation and enumeration is clearly valid for
other optimisation problems, including the “max-flow network interdiction prob-
lem” (Wood [24]). This problem seeks to reduce, as much as possible, the maxi-
mum s-t flow in a capacitated network by interdicting (destroying) a set of edges
using a limited interdiction budget. Derbes [8] uses Lagrangian relaxation to solve
this problem approximately by identifying a minimum-capacity cut in the network
whose capacities are modified through the Lagrangian relaxation. Balcioglu and
Wood [3] describe a fast algorithm for enumerating near-minimum-capacity cuts,
and that can be used to close any duality gap from the Lagrangian procedure, just
as the near-shortest-path enumeration algorithm closes the duality gap in CSPP.
We have already begun to investigate this procedure.
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